Tumor-Associated Lymphatic Vessels Upregulate PDL1 to Inhibit T-Cell Activation
نویسندگان
چکیده
Tumor-associated lymphatic vessels (LVs) play multiple roles during tumor progression, including promotion of metastasis and regulation of antitumor immune responses by delivering antigen from the tumor bed to draining lymph nodes (LNs). Under steady-state conditions, LN resident lymphatic endothelial cells (LECs) have been found to maintain peripheral tolerance by directly inhibiting autoreactive T-cells. Similarly, tumor-associated lymphatic endothelium has been suggested to reduce antitumor T-cell responses, but the mechanisms that mediate this effect have not been clarified. Using two distinct experimental tumor models, we found that tumor-associated LVs gain expression of the T-cell inhibitory molecule PDL1, similar to LN resident LECs, whereas tumor-associated blood vessels downregulate PDL1. The observed lymphatic upregulation of PDL1 was likely due to IFN-g released by stromal cells in the tumor microenvironment. Furthermore, we found that blocking PDL1 results in increased T-cell stimulation by antigen-presenting LECs in vitro. Taken together, our data suggest that peripheral, tumor-associated lymphatic endothelium contributes to T-cell inhibition, by a mechanism similar to peripheral tolerance maintenance described for LN resident LECs. These findings may have clinical implications for cancer therapy, as lymphatic expression of PDL1 could represent a new biomarker to select patients for immunotherapy with PD1 or PDL1 inhibitors.
منابع مشابه
Immunomodulatory roles of lymphatic vessels in cancer progression.
Lymphatic vessels in the tumor microenvironment are known to foster tumor metastasis in many cancers, and they can undergo activation, hyperplasia, and lymphangiogenesis in the tumor microenvironment and in the tumor-draining lymph node. The mechanism underlying this correlation was originally considered as lymphatic vessels providing a physical route for tumor cell dissemination, but recent st...
متن کاملImmunomodulatory Roles of Lymphatic Vessels in Cancer
Lymphatic vessels in the tumormicroenvironment are known to foster tumormetastasis inmany cancers, and they can undergo activation, hyperplasia, and lymphangiogenesis in the tumor microenvironment and in the tumor-draining lymph node. The mechanism underlying this correlation was originally considered as lymphatic vessels providing a physical route for tumor cell dissemination, but recent studi...
متن کاملAn Essential Role for CD44 Variant Isoforms in Epidermal Langerhans Cell and Blood Dendritic Cell Function
Upon antigen contact, epidermal Langerhans cells (LC) and dendritic cells (DC) leave peripheral organs and home to lymph nodes via the afferent lymphatic vessels and then assemble in the paracortical T cell zone and present antigen to T lymphocytes. Since splice variants of CD44 promote metastasis of certain tumors to lymph nodes, we explored the expression of CD44 proteins on migrating LC and ...
متن کاملTargeting of interleukin (IL)-17A inhibits PDL1 expression in tumor cells and induces anticancer immunity in an estrogen receptor-negative murine model of breast cancer
The expression of IL-17A and programmed death ligand 1 (PDL1) is increased in estrogen receptor-negative breast cancer. IL-17A promotes tumor cell survival and invasiveness and inhibits the antitumor immune response. The PDL1-PD1 (programmed death protein 1) signaling pathway promotes escape from immune surveillance in tumor cells. The pro-tumor properties of IL-17A and PDL1 in various cancers ...
متن کاملPrognostic and predictive value of PDL1 expression in breast cancer
Expression of programmed cell death receptor ligand 1 (PDL1) has been scarcely studied in breast cancer. Recently PD1/PDL1-inhibitors have shown promising results in different carcinomas with correlation between PDL1 tumor expression and responses. We retrospectively analyzed PDL1 mRNA expression in 45 breast cancer cell lines and 5,454 breast cancers profiled using DNA microarrays. Compared to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017